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Goal:

To convert the image classifiers into object
detectors on weakly annotated categories
(without bounding box annotations), by
transferring knowledge from visually or/and
semantically similar categories.
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A: Weakly annotated categories (image labels)
B: Fully annotated categories (bounding boxes)

1. Pre-train an 8-layer CNN on ImageNet;

2. Fine-tune for classification on A+B:;

3. Fine-tune for detection on B in R-CNN [2] manner
(category-invariant adaptation, layer 1-7);

4. Category-specific adaptation on A (layer 8).

Assumption: CLS and DET difference on a target category
has a positive correlation with those of similar categories.
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Experimental results

Similarity-based Knowledge Transfer Model

Motivation:

1. Category-specific difference exists between classifier and detector;

2. Visually and semantically similar categories may exhibit more
common transferable properties than dissimilar categories;

3. Visual similarity and semantic relatedness are shown to be
correlated, especially when measured against objects cropped out
from images (thus discarding background clutter).
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Visual similarity measure s,,

Visual similarity between two categories:
so(j,1) o< L5 CNN(I,); on a balanced CLS validation set.

Semantic similarity measure s

Each category is a WordNet synset. 300-dimension vector using
word2vec embedding + synset embedding.

Semantic similarity (2 measures):

1. Inversely proportional to L2 distance of two feature vectors;

2. Coefficient of linear combination of vectors (sparse representation < 20).

w: fc8 weight, A: fc8 weight change from CLS to DET of the

neighbor category.
Neighbor definition: L2 distance between w; and wy; .

Mixture transfer model

s = intersect|as, + (1 — Oz)Ss;sparse]
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Detection mAP on 100 weakly labeled
categories on ILSVRC2013 val2 subset.

Example V|suaI|zat|ons of similarity measures between a weakly category and its source categorles
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Examples of correct detections (true positives) and incorrect detections of our mixture knowledge transfer model on ILSVRC2013 images.

- Conclusion N

* We investigated how knowledge about object similarities from both visual and semantic domains
can be transferred to adapt an image classifier to an object detector.

* Both visual and semantic similarities play an essential role in improving the adaptation process, and

the combination of the two modalities yielded better performance.
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